Dietary fiber is the portion of plant-derived food that cannot be completely broken down by human digestive enzymes. It has two main components:
- Soluble fiber – which dissolves in water – is generally fermented in the colon into gases and physiologically active by-products, such as short-chain fatty acids produced in the colon by gut bacteria. Fermentable fibers are called prebiotic fibers. Examples are beta-glucans (in oats, barley, and mushrooms) and raw guar gum. An exception is psyllium, which is a soluble, viscous, nonfermented fiber. Psyllium is a bulking fiber that retains water as it moves through the digestive system, easing defecation. Soluble fiber is generally viscous and delays gastric emptying which, in humans, can result in an extended feeling of fullness. Exceptions are inulin (in onions), wheat dextrin, oligosaccharides, and resistant starches (in legumes and bananas), which are nonviscous.
- Insoluble fiber – which does not dissolve in water – is inert to digestive enzymes in the upper gastrointestinal tract. Examples are wheat bran, cellulose, and lignin. Coarsely ground insoluble fiber triggers the secretion of mucus in the large intestine, providing bulking. Finely ground insoluble fiber does not have this effect and can actually have a constipating effect. Some forms of insoluble fiber, such as resistant starches, can be fermented in the colon.
Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulin, lignins, chitins (in fungi), pectins, beta-glucans, and oligosaccharides.
Dietary fibers can act by changing the nature of the contents of the gastrointestinal tract and by changing how other nutrients and chemicals are absorbed. Some types of soluble fiber absorb water to become a gelatinous, viscous substance which may or may not be fermented by bacteria in the digestive tract. Some types of insoluble fiber have bulking action and are not fermented. Lignin, a major dietary insoluble fiber source, may alter the rate and metabolism of soluble fibers. Other types of insoluble fiber, notably resistant starch, are fermented to produce short-chain fatty acids, which are physiologically active and confer health benefits. Health benefit from dietary fiber and whole grains may include a decreased risk of death and lower rates of coronary heart disease, colon cancer, and type 2 diabetes.
Food sources of dietary fiber have traditionally been divided according to whether they provide soluble or insoluble fiber. Plant foods contain both types of fiber in varying amounts, according to the plant's characteristics of viscosity and fermentability. Advantages of consuming fiber depend upon which type of fiber is consumed and which benefits may result in the gastrointestinal system. Bulking fibers – such as cellulose, hemicellulose and psyllium – absorb and hold water, promoting regularity. Viscous fibers – such as beta-glucan and psyllium – thicken the fecal mass. Fermentable fibers – such as resistant starch and inulin – feed the bacteria and microbiota of the large intestine, and are metabolized to yield short-chain fatty acids, which have diverse roles in gastrointestinal health.